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In this document, we provide additional materials to supplement our main paper. Section I investigates
the influence of the training patch size on performance. Section II studies the influence of overlapping
training patches. Section III details the procedure to determine the contrast masking factor. Section IV
validates the proposed method with various IQA methods.

I. INFLUENCE OF THE TRAINING PATCH SIZE

To further investigate the effect of different training patch size on performance, we train the proposed
model with 32 × 32, 64 × 64, and 128 × 128 patch size, and corresponding training performances are
illustrated in Fig. 1, Fig. 2, and Fig. 3, respectively. Table I reports the average PSNR results of the
proposed model by using various sizes of the training patch. It is easy to figure out that the patch size
has a weak impact on the performance of the proposed model. Therefore, 64 × 64 is set as the default
size for the training patch in our experiments.

TABLE I
AVERAGE PSNR RESULTS OF THE PROPOSED MODEL WITH DIFFERENT TRAINING PATCH SIZE.

Patch size 32x32 64x64 128x128
1 28.75 28.84 28.46
2 31.51 31.76 31.36
3 32.46 32.97 32.71
4 29.31 29.69 29.89
5 31.68 32.20 31.71
6 32.59 33.11 32.81
7 31.30 31.50 31.48
8 32.55 32.87 32.84
9 31.91 32.67 32.92
10 30.65 30.90 30.84
11 30.96 31.61 31.09
12 33.04 33.21 32.79
13 33.16 33.65 33.54
14 29.97 30.40 30.44
15 29.71 29.75 30.01
16 33.29 33.88 33.69
17 31.09 31.16 30.85
18 31.83 32.36 32.42
19 30.73 31.07 31.00

Average 31.40 31.77 31.62
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Fig. 1. Training loss of the model with 32x32 size.

Fig. 2. Training loss of the model with 64x64 size.

Fig. 3. Training loss of the model with 128x128 size.
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II. INFLUENCE OF OVERLAPPING TRAINING PATCH

Table II shows the performance comparison between the models using the overlapping training set and
the non-overlapping training set in terms of PSNR. Fig. 4 illustrates the training performance of the model
with the overlapping training set. Comparing with Fig. 2, one can see that using the overlapping training
patch has a slight impact on the performance compared with the non-overlapping training set.

TABLE II
PERFORMANCE COMPARISON BETWEEN OVERLAPPED AND NON-OVERLAPPED TRAINING SET.

64x64 (overlapping) 64x64 (non-overlapping)
1 28.81 28.84
2 31.65 31.76
3 32.79 32.97
4 29.64 29.69
5 31.96 32.20
6 32.92 33.11
7 31.43 31.50
8 32.79 32.87
9 32.56 32.67
10 30.86 30.90
11 31.25 31.61
12 33.02 33.21
13 33.48 33.65
14 30.35 30.40
15 29.93 29.75
16 33.55 33.88
17 31.20 31.16
18 32.28 32.36
19 30.99 31.07

Average 31.65 31.77

Fig. 4. Training loss of overlapped training dataset.

III. THE CONTRAST MASKING FACTOR

We conduct subject testing to determine the contrast masking factor (fC) in Section III of our main paper.
More specifically, we randomly sample 10 images from the data set [1], crop and down-sample them to
1920×1080 resolution, and then convert to the luminance domain, as shown in Fig. 5. Subsequently, each
image is reconstructed with various contrast by set fC to 0.70, 0.75, 0.80, 0.85, 0.90 and 0.95, respectively.
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Fig. 5. Sampled images for the subjective test.

Fig. 6. The JND percentage of corresponding scaling factor.

A two-alternative-forced-choice (2AFC) subjective testing is conducted to determine the appropriate fC
factor. During the subjective test, the original image and corresponding reconstructed images are played
side-by-side. The subjective testing environment is similar to subjective testing in Section IV of the paper.
20 subjects are invited and asked to determine whether there are differences between the two images.
The results are shown in Fig. 6, where the JND percentage represents the percentage of “no difference
between the two images”. As such, 0.9 is selected as the corresponding visibility masking since 79.5%
of the reconstructed images are perceptually lossless.

IV. PERFORMANCES ON VARIOUS IQA METHODS

We employed several widely-used image quality assessment (IQA) methods to evaluate the performance
of our proposed JND profile and employed anchors: Visual Information Fidelity (VIF) [2], DLM (Detail
Loss Measure) [3], SSIM [4], and HDR-VDP2.2 [5]. Please note that the HDR-VDP2.2 has two outputs:
a visibility map that computes the visual difference detection probability for each pixel, and a predicted
mean-opinion-score which listed in Table III and Table IV. The results between the original images and
distorted images from certain JND models are exhibited in Table III. To conduct a fair comparison, we
also evaluate the JND models with the same objective quality in terms of PSNR. The methodology is the
same as the subjective test in Subsection V-B of our paper, and results are shown in Table IV. As shown
in Table IV, for most IQA methods, our method has advantages over other JND models in terms of VIF
and VDP. The visibility maps of HDR-VDP 2.2 from different JND models (at the same PSNR level) are
shown in Fig. 8. In general, the red means a higher detection probability while the blue indicates a lower
detection probability, as shown in Fig. 7. From the probability detection map, one can obviously find that
it is difficult to find the distortion of our model.
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Fig. 7. Illustration of the probability detection in terms of color scales.

Fig. 8. Comparison of different JND model in terms of probability of detection from HDR-VDP-2. (a) Pristine image, (b) proposed method,
(c)Yang et al. [6], (d)Liu et al. [7], (e) Wu et al. [8], (f) Wu et al. [9].
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TABLE III
JND MODELS COMPARISON.

Proposed Liu et al. [7] Yang et al. [6] Wu et al. [8] Wu et al. [9]

Index SSIM VIF DLM VDP SSIM VIF DLM VDP SSIM VIF DLM VDP SSIM VIF DLM VDP SSIM VIF DLM VDP

1 0.65 0.54 0.92 51 0.44 0.35 0.85 45 0.44 0.36 0.86 46 0.98 0.93 0.99 60 0.67 0.46 0.92 47

2 0.87 0.81 0.95 56 0.72 0.57 0.92 49 0.75 0.63 0.93 50 0.96 0.74 0.98 55 0.78 0.58 0.95 48

3 0.96 0.81 0.96 60 0.77 0.62 0.94 50 0.81 0.65 0.95 51 0.94 0.66 0.97 54 0.78 0.51 0.94 47

4 0.82 0.59 0.93 54 0.60 0.47 0.90 46 0.61 0.48 0.90 46 0.99 0.95 0.99 67 0.74 0.56 0.94 48

5 0.95 0.88 0.97 60 0.87 0.63 0.95 51 0.89 0.68 0.96 52 0.87 0.57 0.95 51 0.76 0.47 0.92 45

6 0.95 0.87 0.97 59 0.89 0.61 0.95 53 0.91 0.70 0.97 55 0.91 0.64 0.96 62 0.81 0.56 0.94 48

7 0.81 0.54 0.93 52 0.66 0.61 0.90 47 0.69 0.65 0.91 48 0.99 0.95 0.99 63 0.79 0.71 0.95 51

8 0.95 0.77 0.95 54 0.79 0.65 0.95 49 0.83 0.69 0.96 49 0.94 0.73 0.98 56 0.77 0.54 0.95 48

9 0.95 0.71 0.94 57 0.74 0.62 0.94 49 0.77 0.65 0.94 49 0.98 0.88 0.99 60 0.81 0.64 0.96 50

10 0.82 0.61 0.93 50 0.63 0.54 0.90 47 0.65 0.57 0.90 47 0.98 0.88 0.98 58 0.75 0.62 0.94 48

11 0.95 0.90 0.96 56 0.88 0.58 0.96 53 0.90 0.67 0.97 54 0.89 0.56 0.96 53 0.81 0.52 0.95 48

12 0.81 0.66 0.92 50 0.60 0.60 0.89 48 0.63 0.64 0.89 48 0.98 0.89 0.99 60 0.73 0.63 0.94 48

13 0.96 0.80 0.95 58 0.82 0.66 0.93 50 0.85 0.70 0.95 51 0.94 0.68 0.97 54 0.81 0.54 0.94 47

14 0.88 0.51 0.93 57 0.62 0.46 0.89 46 0.63 0.47 0.89 46 0.99 0.97 0.99 68 0.76 0.57 0.93 48

15 0.89 0.79 0.87 44 0.66 0.51 0.93 45 0.68 0.55 0.93 46 0.95 0.73 0.96 51 0.75 0.54 0.94 45

16 0.94 0.83 0.94 60 0.85 0.71 0.97 54 0.88 0.76 0.97 54 0.95 0.80 0.98 57 0.82 0.64 0.97 50

17 0.74 0.69 0.93 50 0.51 0.55 0.89 48 0.52 0.57 0.90 48 0.98 0.87 0.99 58 0.69 0.61 0.94 48

18 0.93 0.72 0.94 56 0.74 0.64 0.93 50 0.76 0.65 0.94 49 0.98 0.92 0.99 64 0.78 0.62 0.96 52

19 0.86 0.65 0.93 51 0.65 0.57 0.91 46 0.68 0.61 0.92 46 0.98 0.86 0.99 56 0.74 0.61 0.95 47

Average 0.88 0.72 0.94 55 0.71 0.58 0.92 49 0.73 0.61 0.93 50 0.96 0.80 0.98 58 0.77 0.58 0.95 49

TABLE IV
JND MODELS COMPARISON WITH STANDARD OBJECTIVE QUALITY.

Proposed Liu et al. [7] Yang et al. [6] Wu et al. [8] Wu et al. [9]

Index SSIM VIF DLM VDP SSIM VIF DLM VDP SSIM VIF DLM VDP SSIM VIF DLM VDP SSIM VIF DLM VDP

1 0.65 0.54 0.92 51 0.53 0.41 0.88 48 0.53 0.42 0.89 48 0.87 0.67 0.85 38 0.53 037 0.88 44

2 0.87 0.81 0.95 56 0.81 0.67 0.95 54 0.80 0.70 0.95 53 0.93 0.65 0.97 50 0.81 0.62 0.96 50

3 0.96 0.81 0.96 60 0.80 0.65 0.94 51 0.81 0.65 0.95 51 0.94 0.66 0.97 54 0.87 0.62 0.96 52

4 0.82 0.59 0.93 54 0.64 0.51 0.91 47 0.65 0.51 0.92 47 0.86 0.67 0.89 41 0.63 0.47 0.91 45

5 0.95 0.88 0.97 60 0.91 0.70 0.96 53 0.89 0.68 0.96 52 0.87 0.57 0.95 51 0.91 0.69 0.97 54

6 0.95 0.87 0.97 59 0.94 0.72 0.87 57 0.92 0.73 0.97 56 0.91 0.64 0.96 53 0.92 0.72 0.98 55

7 0.81 0.54 0.93 52 0.73 0.67 0.92 50 0.71 0.68 0.92 49 0.95 0.81 0.89 40 0.68 0.61 0.93 46

8 0.95 0.77 0.95 54 0.79 0.65 0.95 50 0.80 0.66 0.95 48 0.92 0.68 0.97 53 0.87 0.66 0.97 53

9 0.95 0.71 0.94 57 0.80 0.69 0.96 52 0.79 0.68 0.95 50 0.94 0.75 0.97 50 0.81 0.64 0.96 46

10 0.82 0.61 0.93 50 0.69 0.61 0.92 49 0.71 0.64 0.93 50 0.92 0.68 0.91 43 0.69 0.56 0.93 46

11 0.95 0.90 0.96 56 0.93 0.69 0.97 57 0.91 0.70 0.97 55 0.89 0.56 0.96 52 0.91 0.68 0.98 54

12 0.81 0.66 0.92 50 0.75 0.76 0.93 54 0.73 0.75 0.92 52 0.95 0.75 0.94 48 0.73 0.63 0.93 49

13 0.96 0.80 0.95 58 0.85 0.69 0.94 51 0.85 0.70 0.95 51 0.94 0.68 0.97 54 0.91 0.70 0.97 53

14 0.88 0.51 0.93 57 0.66 0.49 0.90 47 0.67 0.50 0.91 47 0.86 0.68 0.76 35 0.64 0.46 0.89 43

15 0.89 0.79 0.87 44 0.73 0.58 0.95 48 0.71 0.58 0.95 47 0.90 0.63 0.94 46 0.78 0.57 0.95 46

16 0.94 0.83 0.94 60 0.87 0.73 0.97 55 0.85 0.73 0.97 53 0.94 0.75 0.98 54 0.89 0.74 0.98 55

17 0.74 0.69 0.93 50 0.67 0.69 0.94 54 0.63 0.66 0.93 52 0.93 0.68 0.93 44 0.66 0.58 0.94 47

18 0.93 0.72 0.94 56 0.77 0.67 0.94 51 0.79 0.68 0.94 50 0.91 0.72 0.95 47 0.78 0.62 0.96 52

19 0.86 0.65 0.93 51 0.72 0.64 0.93 49 0.71 0.64 0.93 48 0.98 0.65 0.94 43 0.68 0.54 0.93 45

Average 0.88 0.72 0.94 55 0.77 0.64 0.94 52 0.76 0.65 0.94 51 0.91 0.68 0.93 48 0.78 0.61 0.95 50
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